Gear whine noise has become one of the primary challenges facing noise, vibration, and harshness engineers; this is because the electrification of the powertrain has largely eliminated engine masking noise while increasing the working speed of the E-powertrain. In this study, a hybrid metal-composite gear was proposed to reduce gear whine noise, and its performance was evaluated by means of dynamic transmission error (DTE). The test results showed that the hybrid metal-composite gear produced an effectively lower DTE than that of alternatives, particularly when approaching resonance speeds. In addition, a reduction in resonance DTE was verified by acquiring and comparing the frequency response functions of a steel gear and a hybrid metal-composite gear. As DTE is the primary excitation source contributing to whine noise, the hybrid metal-composite gear is expected to be a significant candidate for the reduction in powertrain whine noise.